Area of a Region

-We will expand the idea of the area under the curve.

-The sum of all n terms $a_1, a_2, a_3, ..., a_n$ is written:

$$\sum_{i=1}^{n} a_{i} = a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

where i is the index of summation

 a_i is i-th term of the sum

and the upper and lower bounds of summation are n and 1.

Example

a)
$$\sum_{i=1}^{6} i = 1 + 2 + 3 + 4 + 5 + 6$$

b)
$$\sum_{i=0}^{5} (i+1) = 1+2+3+4+5+6$$

c)
$$\sum_{j=3}^{7} j^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2$$

d)
$$\sum_{k=1}^{n} \frac{1}{n} (k^2 + 1) = \frac{1}{n} (1^1 + 1) + \frac{1}{n} (2^2 + 1) + \dots + \frac{1}{n} (n^2 + 1)$$

e)
$$\sum_{i=1}^{n} f(x_{i}) \Delta x = f(x_{1}) \Delta x + f(x_{2}) \Delta x + \cdots + f(x_{n}) \Delta x$$

Properties

a)
$$\sum_{i=1}^{n} ka_{i} = k \sum_{i=1}^{n} a_{i}$$

b)
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Summation Formulas

a)
$$\sum_{i=1}^{n} c = cn$$

b)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

c)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

d)
$$\sum_{i=1}^{n} i^3 = \frac{n^2 (n+1)^2}{4}$$

Example

Evaluate
$$\sum_{i=1}^{n} \frac{i+1}{n^2}$$
 for $n = 10,100,1000,1000$

$$=\frac{1}{n^2}\sum_{i=1}^n (i+1)$$

$$=\frac{1}{n^2}\left(\sum_{i=1}^n i+\sum_{i=1}^n 1\right)$$

$$=\frac{1}{n^2}\left[\frac{n^2+3n}{2}\right]$$

$$=\frac{n+3}{2n}$$

n	$\frac{n+3}{2n}$
10	0.65000
100	0.51500
1,000	0.50150
10,000	0.50015

$$\lim_{n\to\infty}\frac{n+3}{2n}=\frac{1}{2}$$

Area of a Plane Region

Use 5 rectangles to find $\underline{\text{two}}$ approximations of the area of the region lying between the graphs of

$$f(x) = -x^2 + 5$$
 and the x-axis between $x = 0, x = 2$

Right endpoints are $\frac{2}{5}i$ where i = 1, 2, 3, 4, 5

Width is $\frac{2}{5}$

Height is found by evaluating at the endpoints:

$$\left[0,\frac{2}{5}\right], \left[\frac{2}{5},\frac{4}{5}\right], \left[\frac{4}{5},\frac{6}{5}\right], \left[\frac{6}{5},\frac{8}{5}\right], \left[\frac{8}{5},\frac{10}{5}\right]$$

The sum of the area is:

$$\sum_{i=1}^{5} f\left(\frac{2}{5}i\right) \left(\frac{2}{5}\right) = \sum_{i=1}^{5} \left[-\left(\frac{2i}{5}\right)^{2} + 5\right] \left(\frac{2}{5}\right) = \left(\frac{126}{25}\right) = 6.48$$

The area is actually greater!!

Left endpoints are $\frac{2}{5}(i-1)$ where i = 1,2,3,4,5

Width is $\frac{2}{5}$

Height is found by evaluating the left endpoint

$$\sum_{i=1}^{5} f\left(\frac{2i-2}{5}\right) \left(\frac{2}{5}\right) = \sum_{i=1}^{5} \left[-\left(\frac{2i-2}{5}\right)^{2} + 5\right] \left(\frac{2}{5}\right) = \left(\frac{202}{25}\right) = 8.08$$

So,

Definition of Area of a Region in the Plane

Let f be continuous and non-negative on the interval $\begin{bmatrix} a,b \end{bmatrix}$. The area of the region bounded by the graph of f, the x-axis, and the vertical lines x=a and x=b is:

Area =
$$\lim_{n\to\infty}\sum_{i=1}^n f(c_i)\Delta x$$

where
$$\Delta x = \frac{b-a}{n}$$

Find the area of the region bounded by the graph of $f(x) = x^3$, the x-axis, and the vertical lines x = 0 and x = 1.

Note that f is continuous and non-negative on the interval [0,1].

Next, partition the interval $\begin{bmatrix} 0,1 \end{bmatrix}$ into *n* subintervals each of width $\Delta x = \frac{1}{n}$.

According to the definition of area, you can choose any x-value in the i-th subinterval. Right endpoints are convenient.

$$c_i = \frac{i}{n}$$

Area =
$$\lim_{n\to\infty}\sum_{i=1}^n f(c_i)\Delta x$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{3} \left(\frac{1}{n} \right)$$

$$=\lim_{n\to\infty}\frac{1}{n^4}\sum_{i=1}^n i^3$$

$$=\lim_{n\to\infty}\frac{1}{n^4}\left[\frac{n^2(n+1)^2}{4}\right]$$

$$= \lim_{n \to \infty} \left(\frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^2} \right) = \frac{1}{4}$$

Example

Find the area of the region bounded by the graph of $f(x) = 4 - x^2$, the x-axis, and the vertical lines x = 1 and x = 2.

Continuous and non-negative? [Yes!]

$$\Delta x = \frac{1}{n}$$

Right Endpoint:

$$c_{i} = a + i\Delta x = 1 + \frac{i}{n}$$

Area:

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[4 - \left(1 + \frac{i}{n} \right)^{2} \right] \left(\frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(3 - \frac{2i}{n} - \frac{i^2}{n^2} \right) \left(\frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} 3 - \frac{2}{n^2} \sum_{i=1}^{n} i - \frac{1}{n^3} \sum_{i=1}^{n} i^2 \right]$$

$$= \lim_{n \to \infty} \left[3 - \left(1 - \frac{1}{n} \right) - \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} \right) \right]$$

$$= 3 - 1 - \frac{1}{3}$$

$$= \frac{5}{3}$$

Example

Find the area of the region bounded by the graph of $f(y) = y^2$ and the yaxis for $0 \le y \le 1$.

Continuous and non-negative [Yes!]

Width
$$\Delta y = \frac{1}{n}$$

$$c_i = \frac{i}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{2} \left(\frac{1}{n} \right)$$

$$=\lim_{n\to\infty}\frac{1}{n^3}\sum_{i=1}^n i^2$$

$$=\lim_{n\to\infty}\frac{1}{n^3}\left[\frac{n(n+1)(2n+1)}{6}\right]$$

$$= \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} \right) = \frac{1}{3}$$